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Eddington Luminosity

• Near the surface of a star, matter has low density and non-degenerate, 
then P = Pgas + Prad = k ρ T / (μ mu)  + a T4 / 3.

• We consider a region where the density is too low to transfer energy by 
convection. Then the energy transfer equation is written in the form, 
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(Lr = luminosity, κ=opacity)

大質量星の特徴の一つ：圧力に輻射の影響が強い

→ Eddington のStandard model が有用
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Eddington’s standard model

• In early stages of evolution for M > ~ 1M stars, stellar interior is non-
degenerate and the pressure can be written as

P = Pgas + Prad = k ρ T / (μ mu)  + a T4 / 3 (1.15),
where k = 1.38 x 10-16 erg K-1 = Boltzmann constant, mu = 1.66053 x 10-24 g =        
the atomic mass unit, a = 7.56464 x 10-15 erg cm-3 K-4 = the radiation density
constant, and μ = the molecular weight.

• We define the ratio of gas pressure to the total pressure β as,
β ≡ Pgas / P   then  1-β ≡ Prad / P                   (1.16).

• From (1.8) and (1.9) we have
P = Pgas + Prad = k ρ T / (μ mu)  + a T4 / 3 = k ρ T / (μ mu β)     (1.17).

• Deleting ‘T’ from this equation using a relation
1-β ≡ Prad / P = aT4/(3P),  we have

(1.18).       
13 3/4

3/1

4

3/1

44

4





 






 










uma

k
P

(KH219, 226にも一応書いてある）

5

Eddington’s standard model
• He solved the energy transfer equation by radiation,

as follows.

• Since L/m typically decreases but κ increases with radius (e.g. for Kramers
type κ∝T-3.5 ), he approximated that κ L/m = constant inside the star. Then 
the right hand side of (1.20) is constant and

• Therefore, this approximation leads β=constant, and from the Eq. (1.18),  
the star becomes an n=3 polytrope. This is the Eddington’s standard model.

• From (1.21),   L = (1-β) LEdd (1.22) 
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Eddington’s standard model
■ n=3 Polytrope

This equation shows that very massive stars (M >>100M) has β << 1 and
Radiation dominated. From (1.22),   L = (1-β) LEdd and the luminosities of 
very massive stars are roughly the Eddington luminosity.
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